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Abstract
Resveratrol has been reported to have a wide variety of biological effects. However, little is known regarding its role on
phosphorylation of histone H3, MAP kinase p38, SIR2 and p53 in type I diabetic nephropathy (DN). Hence, the present
study was undertaken to examine changes in the above said parameters by resveratrol treatment. Male Sprague-Dawley
rats were rendered diabetic using a single dose of streptozotocin (55 mg/kg, i.p.). DN was assessed by measurements
of blood urea nitrogen and creatinine levels. Phosphorylation of histone H3, SIR2, p53 and MAP kinase p38 expression
were examined by western blotting. This study reports that treatment of resveratrol prevents the decrease in the expression
of SIR2 in diabetic kidney. It also prevents increase in p38, p53 expression and dephosphorylation of histone H3 in
diabetic kidney. This is the first report which suggests that protection against development of diabetic nephropathy
by resveratrol treatment involves change in phosphorylation of histone H3, expression of Sir-2, p53 and p38 in diabetic
kidney.

Keywords: Resveratrol, diabetic nephropathy, SIR2, oxidative stress, p38, H3 phosphorylation, p53

Abbreviations: STZ, streptozotocin; SIR2, silent information regulator 2; MAP, mitogen activated protein; TBARS,

thiobarbituric acid reactive substances; ROS, reactive oxygen species; SOD, superoxide dismutase; BUN, blood urea nitrogen.

Introduction

Diabetic nephropathy (DN) is the leading cause of

end stage renal disease worldwide and is associated

with increased cardiovascular risk. It can be defined

as a progressive rise in urine albumin excretion,

coupled with increasing blood pressure, leading to

declining glomerular filtration and eventually end

stage renal failure [1]. Current therapeutic approach

or treatment can slow down the development of

disease but not stop the progression of end stage

renal failure, i.e. glycaemic and blood pressure

control [2].

Increased oxidative stress in diabetes is shown to

play a pivotal role in the pathogenesis of diabetic

nephropathy and inhibition of oxidative stress ame-

liorates the manifestations associated with diabetic

nephropathy. Reactive oxygen species (ROS) can

damage cellular macromolecules and act as proapop-

totic agents [3]. Persistent hyperglycemia generates a

hyperosmotic shock environment. Osmotic stress
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triggers various cell responses, including a significant

increase in apoptosis, involving tubular and inter-

stitial cells of cortex and medulla. Apoptosis, widely

observed in different cells of various organisms,

shows a unique morphological pattern of cell death

characterized by chromatin condensation, membrane

blebbing and cell fragmentation. Inter-nucleosomal

DNA cleavage is the most prominent event in

apoptosis and thus widely used as a marker of cell

death process. It has been demonstrated that hyper

osmotic shock-induced cell apoptosis and the accom-

panying biochemical changes, i.e. activation of cas-

pase-3 and DNA fragmentation in the cells.

Antioxidants, such as ascorbic acid and a-tocopherol

block this cell induced apoptosis [4].

There is significant increase in apoptosis in the

tubular and interstitial cells during the course of

progression of diabetic nephropathy [5,6]. Stress-

activated signalling pathways such as NF-kB and p38

MAPK underlie the development of diabetic compli-

cations [7]. Previously, it has also been reported that

hyperglycemia can activate the p38 MAPK pathway

in many cell types, including renal cells [8,9].

Activation of p38 is known to be involved in histone

H3 phosphorylation that results in modifying chro-

matin structure [10]. Phosphorylation of histone H3

at Ser10 facilitates the transcription of immediate

early genes [11,12]. However, the exact link between

the activation and p38 MAPK and histone H3

phosphorylation at Ser 10 and transcription of genes

under type I diabetic condition is not well estab-

lished.

Resveratrol (trans-3,4’,5-tri-hydroxystilbene), is a

natural phytoalexin known to extend the life span of

evolutionary distant species including S. cervisiae,

C. elegans and D. melanogaster in a SIR2 dependent

manner [13�16]. Howitz et al. [13] have reported

that resveratrol, a polyphenol found in red wine, is

the potent activator of SIRT1 for both the acetylated

substrate and NAD(�) and increases cell survival by

stimulating SIRT1-dependent deacetylation of p53.

They have also reported that it mimics effects of

calorie restriction by stimulating SIR2, in yeast.

Resveratrol has also been shown to shift the physiol-

ogy of middle aged mice on a high calorie diet

towards that of mice on a standard diet [17]. More-

over, resveratrol is also reported to have a wide variety

of biological effects [18] as an antioxidant [19], as an

anti-cancer agent [20] and also as anti-inflammatory

[21]. However, little is known regarding its effect on

post-translational modification of histone H3, p38,

SIR2 and p53 expression in type I diabetic kidney.

Therefore, the present study was undertaken to

examine changes in histone H3 phosphorylation,

SIR2, p53 and MAP kinase p38 expression by

resveratrol in Streptozotocin (STZ) induced type I

diabetic nephropathy.

Materials and methods

Chemicals

All the chemicals were purchased from Sigma (St.

Louis, MO), unless otherwise mentioned.

Animal treatment

All the experiments were approved by the Institu-

tional Animal Ethics Committee (IAEC) and com-

plied with the NIH guidelines on handling of

experimental animals. Experiments were performed

on male Sprague-Dawley (SD) rats in the weight

range of 240�260 g which were procured from the

central animal facility of the institute, kept at con-

trolled environmental conditions with room tempera-

ture 22928C and 12 h light/dark cycles. After 1 week

of acclimatization, animals were randomly divided

into two groups at the start of the experiment. In the

first group, type I diabetes was induced as described

previously [22]. Briefly, diabetes was induced by

injecting a single dose of streptozotocin (STZ)

(55 mg/kg, i.p. dissolved in ice cold sodium citrate

buffer, 0.01 M, pH 4.4). Age matched control rats

received sodium citrate buffer. Animals with plasma

glucose level�250 mg/dl after 48 h post-induction of

diabetes were included in the study as diabetic

animals. Diabetic animals after 2 weeks were divided

into two groups, namely diabetic/control (n�6) and

diabetic/treated with resveratrol (10 mg/kg/day, ip, for

4 weeks, n�6). Along with these groups, there was

one age matched normal/control group (n�6) and

one normal/with resveratrol treated group (n�6).

Treatment of resveratrol was started from the 5th

week and continued until the end of week 8 (4 weeks

treatment). Each animal in the control group received

0.25 ml/day of vehicle, ip.

Estimation of plasma glucose, blood urea nitrogen and

creatinine

Blood samples were collected from rat tail vein under

light ether anaesthesia in heparinized centrifuge tubes

and immediately centrifuged at 2300 g for the separa-

tion of plasma. Plasma was stored at �808C until

assayed. The plasma was used for the estimation of

glucose, blood urea nitrogen (BUN) and creatinine as

described previously [22,23].

Blood pressure recording

Blood pressure (Systolic, mean and diastolic) was

recorded at the 8th week post-STZ administration,

using a tail cuff blood pressure recorder (IITC INC,

Life Science Instruments, CA). Blood pressure was

measured three times for each rat and the average was

calculated, as described previously [22].
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Assessment of renal oxidative stress markers

Oxidative stress markers were measured as described

previously [22]. Briefly, after sacrificing rat, the

kidneys were excised and rinsed with normal saline

and weighed. After weighing, kidney tissue was

minced properly and the homogenate was prepared

in cold phosphate-buffered saline (pH 7.4) and

centrifuged at 700 g. Supernatant was collected and

used for estimations. The lipid peroxide level in

animal tissues was measured according to the method

described by Ohkawa et al. [24]. SOD activity was

estimated according to the method described by

Paoletti and Mocali [25].

Protein isolation and western blotting

Nuclei, histone isolation and western blotting were

performed in kidney tissues as described previously

[22,23,26]. Immunoblot analysis was performed by

using Anti p-Histone H3 ser-10 (rabbit 1:2000, Santa

Cruz, CA), Anti Histone H3 (rabbit 1:5000, Upstate,

Lake Placid, NY), Anti p53 (mouse monoclonal,

10 mg/ml, Calbiochem), Anti Sir 2 (rabbit 1:500,

Sigma, St. Louis, MO), Anti p38 (rabbit 1:500, Santa

Cruz, CA), Anti-actin (rabbit 1:2500, Sigma, St.

Louis, MO) and HRP-conjugated secondary antibo-

dies (anti-rabbit) from Santa Cruz (CA). Proteins

were detected with the enhanced chemiluminescence

(ECL) system and ECL Hyperfilm (Amersham

Pharmacia Biotech, UK Ltd, Little Chalfont, Buck-

inghamshire, UK).

Statistical analysis

Experimental values are expressed as mean9SEM.

Comparison of mean values between various groups

was performed by one way-analysis of variance (one

way-ANOVA) followed by multiple comparisons by

Tukey test. P-value B0.05 is considered to be

significant.

Results

Change in body weight and kidney weight/body weight

ratio by resveratrol treatment

Diabetic animals showed significant decrease in body

weights and increase in kidney weight. Moreover,

kidney weight/body weight ratio doubled as com-

pared to normal/control rats. Treatment with resver-

atrol prevents weight loss in diabetic rats up to a

certain extent. However, resveratrol treatment leads

to a significant reduction in the kidney weight/body

weight ratio as compared to diabetic/control rats

(Table I).

Effect of resveratrol treatment on plasma glucose, plasma

creatinine and BUN

A plasma glucose level of diabetic rats was signifi-

cantly higher than the normal/control group. Diabetic

rats treated with resveratrol did not show any

significant decrease in glucose level. An increase in

plasma creatinine level was observed in diabetic/

control rats as compared to normal/control group.

However, treatment with resveratrol for 4 weeks

significantly decreased plasma creatinine level in

diabetic rats (Table II). Similarly, BUN of diabetic/

control rats was significantly higher than in the

normal/control group and there was a significant

drop in its level on treatment with resveratrol (Table

II). Increase in plasma creatinine level and BUN level

indicates the development of diabetic nephropathy in

rats [27,28].

Effect of resveratrol treatment on haemodynamic

parameters

In diabetic/control rats systolic blood pressure (SBP),

mean blood pressure (MBP) and diastolic blood

pressure (DBP) were significantly higher as compared

Table I. Effect of resveratrol on body weight (g), kidney weight (g) and kidney weight/body weight ratio in diabetic animals. Body weight

and kidney weight were taken after 8 weeks.

Groups Body weight (BW) in g Kidney weight (KW) in g KW/BW ratio*1000

Normal/control 391918 0.7690.03 1.990.05

Normal/resveratrol treated 390911 0.7190.05 1.890.06

Diabetic/control 181914***a 1.2390.13*a 6.890.07***a

Diabetic/resveratrol treated 22798 0.8590.02*b 3.790.18***b

All the values were represented as Mean9SEM (n�6), *** pB0.001, * pB0.05.
a significantly different from normal/control; b significantly different from diabetic/control.

Table II. Effect of resveratrol treatment on plasma glucose

(PGL), blood urea nitrogen (BUN) and plasma creatinine (PCR)

in diabetic rats. Biochemical parameters were estimated after 8

weeks.

Groups PGL (mg/dl)

BUN

(mg/dl) PCR (g/dl)

Normal/control 10792 2491 1.290.08

Normal/resveratrol

treated

11993 2192 1.390.05

Diabetic/control 452930***a 5694***a 1.890.11***a

Diabetic/resveratrol

treated

418913 3792**b 1.090.1**b

All the values were represented as Mean9SEM (n�6), ***pB

0.001, ** pB0.01.
a significantly different from normal/control; b significantly

different from diabetic/control.
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to the control group indicating the development of

hypertension. However, treatment with resveratrol

significantly improved hypertensive condition of dia-

betic rats (Table III).

Effect of resveratrol treatment on oxidative stress markers

Treatment of resveratrol showed significant change in

thiobarbituric acid reacting substances (TBARS) and

superoxide dismutase (SOD) levels in diabetic rats.

Diabetic/control rats show higher levels of TBARS as

compared to normal/control rats (see Figure 1A).

Treatment with resveratrol significantly reduces the

levels of TBARS in diabetic rat kidney. Diabetic/

control animals also show significant decrease in

SOD level as compared to normal/control animals

(see Figure 1B). Treatment with resveratrol leads

to an increase in the SOD activity in diabetic animals.

However, resveratrol per se did not show any

significant effect on oxidative stress markers (see

Figures 1A and B).

Resveratrol treatment decreases the expression of p38 in

diabetic rat kidney

It has been reported that hyperglycemic conditions

also result in p38 activation [29]. Proapoptotic

protein p38 plays a pathological role in diabetic

condition [8]. Level of p38 expression was checked

on resveratrol treatment in diabetic rats. Our data

Table III. Effect of resveratrol treatment on systolic blood pressure (SBP), mean arterial blood pressure and diastolic blood pressure

(DBP) of diabetic rats. Blood pressure was measured after 8 weeks.

Groups SBP (mmHg) MAP (mmHg) DBP (mmHg)

Normal/control 11390.7 9190.3 8190.4

Normal/resveratrol treated 11691.6 8990.7 7991.4

Diabetic/control 14492.1***a 12091.7***a 10991.3***a

Diabetic/resveratrol treated 12096.4**b 9994.9***b 8894.4***b

All the values were represented as Mean9SEM (n�6), *** pB0.001, ** pB0.01.
a significantly different from normal/control; b significantly different from diabetic/control.
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Figure 1. Effect of resveratrol treatment on TBARS and SOD levels in diabetic rat kidney: (A) TBARS and (B) SOD. All the values were

represented as Mean9SEM (n�6), *pB0.05; Where, a vs normal/control group and b vs diabetic/control.
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indicate significant increase in expression of p38 in

diabetic kidney (Figure 2A, lane b). However, this

increase was prevented by resveratrol treatment

(Figure 2A, lane c).

Treatment of resveratrol changes the expression of p53 and

SIR2 in diabetic rat kidney

Under hyperglycemic conditions expression of p53

significantly increases in the mouse blastocyst [30]

and in myocytes [31]. We also observe increase in p53

expression in diabetic kidney (Figure 2B, lane b).

Moreover, our data shows that treatment of resvera-

trol shows a decrease in expression of p53 in diabetic

kidney (Figure 2B, lane c). p53 is deacetylated and its

expression is down-regulated by SIR2 [32]. Thus,

SIR2 negatively regulates p53-dependent apoptosis in

response to cellular damage [33]. Our results show

that there is a decrease in expression of SIR2 in
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Figure 2. Western blot of p38, p53, SIR2 and p-Histone H3 in rat kidney after 4 weeks treatment of resveratrol: Western blot of (A) p38,

(B) p53, (C) SIR2 and (D) p-H3 (Ser-10). Where, a (normal/control), b (diabetic/control) and c (diabetic/resveratrol treated). Similar

results were obtained in three independent experiments. All the values were represented as Mean9SEM, ***pB0.001; **pB0.01;

*pB0.05; Where, a vs normal/control and b vs diabetic/control.
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diabetic rat kidney (Figure 2C, lane b). However,

treatment of resveratrol significantly increased SIR2

expression in diabetic condition (Figure 2C, lane c).

This can only be explained if we assume that

resveratrol directly or indirectly protects cells from

undergoing apoptosis.

Resveratrol prevents dephosphorylation of histone H3 in

diabetic kidney

Phosphorylation of histone H3 at serine 10 occurs

usually when cells enter into mitosis [34]. Several

toxicants have also been shown to induce histone H3

phosphorylation, which results into premature chro-

matin condensation and cell death [10,35]. Figure

2D, lane b shows dephosphorylation of histone H3

under diabetic condition. However, treatment of

resveratrol prevents histone H3 dephosphorylation

(Figure 2D, lane c). Change in histone H3 phosphor-

ylation suggests that resveratrol is preventing cells

undergoing mitotic arrest and eventually the process

of cell death.

Discussion

In the present study, we provide evidence that

resveratrol treatment shows protection against devel-

opment of diabetic nephropathy. In rats under STZ-

induced hyperglycemia, chronic administration of

resveratrol protects against kidney damage and con-

currently attenuates oxidative stress in these tissues.

Apart from showing protection in biochemical and

oxidative stress parameters by resveratrol treatment,

our data also shows the anti-apoptotic role of

resveratrol in protecting animals from developing

diabetic nephropathy. Besides anti-cancer activities

[36], resveratrol also exhibits pronounced antioxidant

properties by its ability to inhibit hydrogen peroxide-

or lipid hydroperoxide dependent lipid peroxidation

of cellular membrane lipids [37]. In addition to its

free radical scavenging and anti-apoptotic properties,

resveratrol also exhibits an anti-inflammatory activity

via down-regulation of COX-2 [38], nitric oxide

synthase through suppression of NF-kB activation

[39] and an oestrogenic agonistic activity [40] as its

structure resembles a synthetic oestrogen, diethylstil-

bestrol. This pharmacological action is very useful in

preventing mortality due to infection during diabetes,

because diabetic mellitus patients suffer from infec-

tions more often than normal individuals.

In the present study, under diabetic nephropathic

condition, kidney weight to body weight ratio was

increased. Treatment of resveratrol to these animals

significantly decreases kidney weight to body weight

ratio. However, we failed to observe any significant

effect on body weight and hyperglycemia by resver-

atrol treatment. Moreover, treatment with resveratrol

lowers blood urea nitrogen and plasma creatinine in

diabetic animals significantly. This can be well

explained if we consider increased clearance of blood

urea and creatinine by kidney or due to decreases in

protein degradation under diabetic condition.

Our results suggest that resveratrol treatment has a

substantial effect on lowering blood pressure. It

lowers systolic, diastolic and mean arterial blood

pressure. This may be due to resveratrol mediated

decrease in oxidative stress. Free radicals react with

phenolic compounds much faster than with lipids or

DNA. Therefore, phenols protect lipids and DNA

from oxidative damage. A direct neuroprotective

effect of resveratrol against oxidative stress has been

demonstrated in PC12 cells [41].

Apart from showing protection in biochemical and

oxidative stress parameters, our data also shows the

anti-apoptotic role of resveratrol in protecting ani-

mals from developing diabetic nephropathy. Our

results demonstrate that resveratrol protects the

development of diabetic nephropathy by directly or

indirectly inhibiting cell death pathways. Several

reports show that stress activated kinase p38 is

activated during diabetic condition [29,42]. We

have also reported an increase in expression of p38

in diabetic kidney and intermittent fasting (IF)

prevents this increase [22]. Consistent with our

previous reports, treatment of resveratrol also pre-

vents an increase in expression of p38 in diabetic

kidney.

Stress activated protein kinase; p38 is known to

modify chromatin structure by changing post-transla-

tional modifications of histones [10]. Phosphoryla-

tion of histone H3 at Ser 10 usually happens only

when either cell enter into mitosis or during pre-

mature chromatin condensation [43]. Moreover, it is

also important for transcriptional regulation in the

transcription of immediate early genes [11,12,44].

Phosphorylation of histone H3 Ser 10 has been

reported to be linked with initiation of chromosome

condensation in G(2) and for proper chromosome

segregation at mitosis [44]. Recently, we have shown

that there is a decrease in phosphorylation of histone

H3 in diabetic kidney and this decrease in phosphor-

ylation was prevented by IF [22]. Dephosphorylation

of histone H3 suggests that cells are under mitotic

arrest. Treatment of resveratrol prevents decrease in

histone H3 phosphorylation in diabetic kidney. It can

be easily assumed that resveratrol also prevents cells

undergoing mitotic arrest during the progression of

diabetic nephropathy.

Phosphorylation of H3 and apoptotic chromosome

condensation is unrelated events and chromosome

condensation can occur without phosphorylation

at Ser-10. Hendzel et al. [45] have also reported

chromatin condensation is also not associated with

apoptosis. The increase in phosphorylation of histone

H3 in resveratrol treated rats might be due to specific

inhibition of histone phosphatase or activation
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of histone kinases (MSK1 and RSK2). Our data

provides indirect evidence that resveratrol increases

phosphorylation of histone H3 which is not MAPK

p38 dependent rather it is histone phosphatase

dependent. It can be explained if we assume histone

kinases (MSK1 and RSK2) are activated by upstream

kinase p38.

Recently, it has been reported that SIRT1 can

prevent oxidative stress induced apoptosis through

p53 deacetylation in messengial cells and upregula-

tion of SIRT1 may provide a new strategy for

preventing kidney glomerular diseases [32]. More-

over, it has been reported that increased expression of

p53 gene under diabetic condition is associated with

renal apoptosis [46]. We also provide evidence

regarding an inverse relationship between SIR2 and

p53 in diabetic rat kidney. Resveratrol is able to

prevent the decrease in SIR2 and increase in p53

expression in diabetic kidney, which might be re-

sponsible for preventing apoptotic cell death in

diabetic kidney.

Hence, keeping in mind the above observations

further studies in this direction are to be planned to

elucidate the complete mechanism and cross-talk

between different pathways involved in anti-diabetic

and nephroprotective effect of resveratrol. Under-

standing the mechanism involved in resveratrol action

can have potentially profound clinical implications.
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